Pseudo-polynomial algorithms for min-max and min-max regret problems?
نویسندگان
چکیده
We present in this paper general pseudo-polynomial time algorithms to solve min-max and min-max regret versions of some polynomial or pseudo-polynomial problems under a constant number of scenarios. Using easily computable bounds, we can improve these algorithms. This way we provide pseudo-polynomial algorithms for the min-max and and min-max regret versions of several classical problems including minimum spanning tree, shortest path, and knapsack.
منابع مشابه
General approximation schemes for min-max (regret) versions of some (pseudo-)polynomial problems
While the complexity of min-max and min-max regret versions of most classical combinatorial optimization problems has been thoroughly investigated, there are very few studies about their approximation. For a bounded number of scenarios, we establish general approximation schemes which can be used for min-max and min-max regret versions of some polynomial or pseudo-polynomial problems. Applying ...
متن کاملComplexity of the Min-Max (Regret) Versions of Cut Problems
This paper investigates the complexity of the min-max and min-max regret versions of the s− t min cut and min cut problems. Even if the underlying problems are closely related and both polynomial, we show that the complexity of their min-max and min-max regret versions, for a constant number of scenarios, are quite contrasted since they are respectively strongly NP-hard and polynomial. Thus, we...
متن کاملOn the approximability of robust spanning tree problems
In this paper the minimum spanning tree problem with uncertain edge costs is discussed. In order to model the uncertainty a discrete scenario set is specified and a robust framework is adopted to choose a solution. The min-max, min-max regret and 2-stage min-max versions of the problem are discussed. The complexity and approximability of all these problems are explored. It is proved that the mi...
متن کاملApproximation of min-max and min-max regret versions of some combinatorial optimization problems
This paper investigates, for the first time in the literature, the approximation of minmax (regret) versions of classical problems like shortest path, minimum spanning tree, and knapsack. For a constant number of scenarios, we establish fully polynomial-time approximation schemes for the min-max versions of these problems, using relationships between multi-objective and min-max optimization. Us...
متن کاملComplexity of the min-max (regret) versions of min cut problems
This paper investigates the complexity of the min-max and min-max regret versions of the min s-t cut and min cut problems. Even if the underlying problems are closely related and both polynomial, the complexity of their min-max and min-max regret versions, for a constant number of scenarios, is quite contrasted since they are respectively strongly NP hard and polynomial. However, for a non cons...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005